If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1331=16t^2
We move all terms to the left:
1331-(16t^2)=0
a = -16; b = 0; c = +1331;
Δ = b2-4ac
Δ = 02-4·(-16)·1331
Δ = 85184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{85184}=\sqrt{7744*11}=\sqrt{7744}*\sqrt{11}=88\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-88\sqrt{11}}{2*-16}=\frac{0-88\sqrt{11}}{-32} =-\frac{88\sqrt{11}}{-32} =-\frac{11\sqrt{11}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+88\sqrt{11}}{2*-16}=\frac{0+88\sqrt{11}}{-32} =\frac{88\sqrt{11}}{-32} =\frac{11\sqrt{11}}{-4} $
| 2X+30o=5X-30o | | a/9+3=10 | | 2x+5x=3x+24 | | (0.15-0.2x=0.3x+0.9) | | 2(4-y)=y-4 | | 5t+12.50=75.25 | | 5-3x+1=5 | | 4(8+b)=28 | | 4f+12f-30=34 | | m/2+6=10m | | 1/2x(x+5)=6 | | 3(20)-17=y | | 6a+9=57 | | (0.15-0.2x=+3x+0.9) | | 3x+9+3x+1+4x=180 | | 4.5+1.2w=54.6+0.8w | | 6y+9=150 | | 3(1-4d)=-2(6d+24) | | 2(3x−2)=2(3x−2)= 2020 | | A+3=2+a-2-3a | | 3x/2−x=x/10−6/5 | | 3(2d+2)=d-24 | | ½x+2=⅜x-1 | | -3x²+19x+14=0 | | (4x+5)+37=90 | | 2(x-3)=0+2(3-x) | | 4x+24=4x+3 | | 4y^2-9y=-3 | | 2/3x-4=-x+26 | | 48+2y=15 | | 68+x(x-24)=180 | | 7x–3x+24=4x+3 |